Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(3): 75, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453705

ABSTRACT

KEY MESSAGE: We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question. Previous studies have shown promising predictive abilities using sparse factorial instead of tester-based training sets to predict single-cross hybrids from the same generation. This study aims to further investigate the use of factorials and their optimization to predict line general combining abilities (GCAs) and hybrid values across breeding cycles. It relies on two breeding cycles of a maize reciprocal genomic selection scheme involving multiparental connected reciprocal populations from flint and dent complementary heterotic groups selected for silage performances. Selection based on genomic predictions trained on a factorial design resulted in a significant genetic gain for dry matter yield in the new generation. Results confirmed the efficiency of sparse factorial training sets to predict candidate line GCAs and hybrid values across breeding cycles. Compared to a previous study based on the first generation, the advantage of factorial over tester training sets appeared lower across generations. Updating factorial training sets by adding single-cross hybrids between selected lines from the previous generation or a random subset of hybrids from the new generation both improved predictive abilities. The CDmean criterion helped determine the set of single-crosses to phenotype to update the training set efficiently. Our results validated the efficiency of sparse factorial designs for calibrating hybrid genomic prediction experimentally and showed the benefit of updating it along generations.


Subject(s)
Hybridization, Genetic , Zea mays , Genomics/methods , Plant Breeding , Silage , Zea mays/genetics
2.
Theor Appl Genet ; 137(1): 19, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214870

ABSTRACT

KEY MESSAGE: Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity. While managing diversity can delay this loss, introducing external sources of diversity is necessary to bring back favorable genetic variation. Genetic resources exhibit greater diversity than elite materials, but their lower performance levels hinder their use. This is the case for European flint maize, for which elite germplasm has incorporated only a limited portion of the diversity available in landraces. To enrich the diversity of this elite genetic pool, we established an original cooperative maize bridging population that involves crosses between private elite materials and diversity donors to create improved genotypes that will facilitate the incorporation of original favorable variations. Twenty donor × elite BC1S2 families were created and phenotyped for hybrid value for yield related traits. Crosses showed contrasted means and variances and therefore contrasted potential in terms of selection as measured by their usefulness criterion (UC). Average expected mean performance gain over the initial elite material was 5%. The most promising donor for each elite line was identified. Results also suggest that one more generation, i.e., 3 in total, of crossing to the elite is required to fully exploit the potential of a donor. Altogether, our results support the usefulness of incorporating genetic resources into elite flint maize. They call for further effort to create fixed diversity donors and identify those most suitable for each elite program.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/genetics , Phenotype , Genotype , Genetic Variation
3.
Theor Appl Genet ; 136(11): 219, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816986

ABSTRACT

KEY MESSAGE: An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.


Subject(s)
Hybrid Vigor , Zea mays , Chromosome Mapping/methods , Zea mays/genetics , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype
4.
EBioMedicine ; 92: 104602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148583

ABSTRACT

BACKGROUND: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors. METHODS: We tested a targeted library of ten epidrugs targeting regulators of enhancers and super-enhancers on reprogramming gene expression networks in seventeen patient-derived primary pancreatic cancer cell cultures (PDPCCs), of both basal and classical subtypes. We subsequently evaluated the ability of these epidrugs to sensitize pancreatic cancer cells to five chemotherapeutic drugs that are clinically used for this malignancy. FINDINGS: To comprehend the impact of epidrug priming at the molecular level, we evaluated the effect of each epidrugs at the transcriptomic level of PDPCCs. The activating epidrugs showed a higher number of upregulated genes than the repressive epidrugs (χ2 test p-value <0.01). Furthermore, we developed a classifier using the baseline transcriptome of epidrug-primed-chemosensitized PDPCCs to predict the best epidrug-priming regime to a given chemotherapy. Six signatures with a significant association with the chemosensitization centroid (R ≤ -0.80; p-value < 0.01) were identified and validated in a subset of PDPCCs. INTERPRETATION: We conclude that targeting enhancer-initiated pathways in patient-derived primary cells, represents a promising approach for developing new therapies for human pancreatic cancer. FUNDING: This work was supported by INCa (Grants number 2018-078 to ND and 2018- 079 to JI), Canceropole PACA (ND), Amidex Foundation (ND), and INSERM (JI).


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Precision Medicine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic
5.
Genetics ; 224(3)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37170627

ABSTRACT

Epistasis, commonly defined as interaction effects between alleles of different loci, is an important genetic component of the variation of phenotypic traits in natural and breeding populations. In addition to its impact on variance, epistasis can also affect the expected performance of a population and is then referred to as directional epistasis. Before the advent of genomic data, the existence of epistasis (both directional and non-directional) was investigated based on complex and expensive mating schemes involving several generations evaluated for a trait of interest. In this study, we propose a methodology to detect the presence of epistasis based on simple inbred biparental populations, both genotyped and phenotyped, ideally along with their parents. Thanks to genomic data, parental proportions as well as shared parental proportions between inbred individuals can be estimated. They allow the evaluation of epistasis through a test of the expected performance for directional epistasis or the variance of genetic values. This methodology was applied to two large multiparental populations, i.e. the American maize and soybean nested association mapping populations, evaluated for different traits. Results showed significant epistasis, especially for the test of directional epistasis, e.g. the increase in anthesis to silking interval observed in most maize inbred progenies or the decrease in grain yield observed in several soybean inbred progenies. In general, the effects detected suggested that shuffling allelic associations of both elite parents had a detrimental effect on the performance of their progeny. This methodology is implemented in the EpiTest R-package and can be applied to any bi/multiparental inbred population evaluated for a trait of interest.


Subject(s)
Epistasis, Genetic , Quantitative Trait Loci , Humans , Plant Breeding , Genotype , Phenotype , Genomics
6.
Proc Natl Acad Sci U S A ; 120(14): e2205780119, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972431

ABSTRACT

Genetic progress of crop plants is required to face human population growth and guarantee production stability in increasingly unstable environmental conditions. Breeding is accompanied by a loss in genetic diversity, which hinders sustainable genetic gain. Methodologies based on molecular marker information have been developed to manage diversity and proved effective in increasing long-term genetic gain. However, with realistic plant breeding population sizes, diversity depletion in closed programs appears ineluctable, calling for the introduction of relevant diversity donors. Although maintained with significant efforts, genetic resource collections remain underutilized, due to a large performance gap with elite germplasm. Bridging populations created by crossing genetic resources to elite lines prior to introduction into elite programs can manage this gap efficiently. To improve this strategy, we explored with simulations different genomic prediction and genetic diversity management options for a global program involving a bridging and an elite component. We analyzed the dynamics of quantitative trait loci fixation and followed the fate of allele donors after their introduction into the breeding program. Allocating 25% of total experimental resources to create a bridging component appears highly beneficial. We showed that potential diversity donors should be selected based on their phenotype rather than genomic predictions calibrated with the ongoing breeding program. We recommend incorporating improved donors into the elite program using a global calibration of the genomic prediction model and optimal cross selection maintaining a constant diversity. These approaches use efficiently genetic resources to sustain genetic gain and maintain neutral diversity, improving the flexibility to address future breeding objectives.


Subject(s)
Quantitative Trait Loci , Selection, Genetic , Humans , Phenotype , Quantitative Trait Loci/genetics , Genomics , Alleles , Plant Breeding , Genetic Variation , Models, Genetic
7.
Plant Biotechnol J ; 21(6): 1123-1139, 2023 06.
Article in English | MEDLINE | ID: mdl-36740649

ABSTRACT

Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.


Subject(s)
Genomics , Plant Breeding , Genotype , Genome, Plant/genetics , DNA , Genetic Variation/genetics , Zea mays/genetics
8.
PLoS Genet ; 19(1): e1010054, 2023 01.
Article in English | MEDLINE | ID: mdl-36656906

ABSTRACT

We introduce a fast, new algorithm for inferring from allele count data the FST parameters describing genetic distances among a set of populations and/or unrelated diploid individuals, and a tree with branch lengths corresponding to FST values. The tree can reflect historical processes of splitting and divergence, but seeks to represent the actual genetic variance as accurately as possible with a tree structure. We generalise two major approaches to defining FST, via correlations and mismatch probabilities of sampled allele pairs, which measure shared and non-shared components of genetic variance. A diploid individual can be treated as a population of two gametes, which allows inference of coancestry coefficients for individuals as well as for populations, or a combination of the two. A simulation study illustrates that our fast method-of-moments estimation of FST values, simultaneously for multiple populations/individuals, gains statistical efficiency over pairwise approaches when the population structure is close to tree-like. We apply our approach to genome-wide genotypes from the 26 worldwide human populations of the 1000 Genomes Project. We first analyse at the population level, then a subset of individuals and in a final analysis we pool individuals from the more homogeneous populations. This flexible analysis approach gives advantages over traditional approaches to population structure/coancestry, including visual and quantitative assessments of long-standing questions about the relative magnitudes of within- and between-population genetic differences.


Subject(s)
Algorithms , Genetics, Population , Humans , Genotype , Computer Simulation , Alleles
9.
Hortic Res ; 9: uhac184, 2022.
Article in English | MEDLINE | ID: mdl-36338844

ABSTRACT

The mapping and introduction of sustainable resistance to viruses in crops is a major challenge in modern breeding, especially regarding vegetables. We hence assembled a panel of cucumber elite lines and landraces from different horticultural groups for testing with six virus species. We mapped 18 quantitative trait loci (QTL) with a multiloci genome wide association studies (GWAS), some of which have already been described in the literature. We detected two resistance hotspots, one on chromosome 5 for resistance to the cucumber mosaic virus (CMV), cucumber vein yellowing virus (CVYV), cucumber green mottle mosaic virus (CGMMV) and watermelon mosaic virus (WMV), colocalizing with the RDR1 gene, and another on chromosome 6 for resistance to the zucchini yellowing mosaic virus (ZYMV) and papaya ringspot virus (PRSV) close to the putative VPS4 gene location. We observed clear structuring of resistance among horticultural groups due to plant virus coevolution and modern breeding which have impacted linkage disequilibrium (LD) in resistance QTLs. The inclusion of genetic structure in GWAS models enhanced the GWAS accuracy in this study. The dissection of resistance hotspots by local LD and haplotype construction helped gain insight into the panel's resistance introduction history. ZYMV and CMV resistance were both introduced from different donors in the panel, resulting in multiple resistant haplotypes at same locus for ZYMV, and in multiple resistant QTLs for CMV.

10.
Theor Appl Genet ; 135(10): 3337-3356, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35939074

ABSTRACT

KEY MESSAGE: Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G × E). Phenomic selection is supposed to be efficient for modelling the G × E effect because it accounts for non-additive effects. Here, phenomic data are near-infrared (NIR) spectra obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain yield and heading date in different MET scenarios. We also compared different methods to model the G × E using different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar in all different MET scenarios. Better predictive abilities were obtained when G × E effects were modelled with NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for modelling the G × E. To facilitate the implementation of phenomic prediction, we tested MET designs where the NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection is an efficient and practicable prediction method for dealing with G × E.


Subject(s)
Gene-Environment Interaction , Triticum , Edible Grain/genetics , Genome, Plant , Genotype , Models, Genetic , Phenomics , Phenotype , Plant Breeding/methods , Selection, Genetic , Triticum/genetics
11.
Theor Appl Genet ; 135(9): 3143-3160, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35918515

ABSTRACT

KEY MESSAGE: Calibrating a genomic selection model on a sparse factorial design rather than on tester designs is advantageous for some traits, and equivalent for others. In maize breeding, the selection of the candidate inbred lines is based on topcross evaluations using a limited number of testers. Then, a subset of single-crosses between these selected lines is evaluated to identify the best hybrid combinations. Genomic selection enables the prediction of all possible single-crosses between candidate lines but raises the question of defining the best training set design. Previous simulation results have shown the potential of using a sparse factorial design instead of tester designs as the training set. To validate this result, a 363 hybrid factorial design was obtained by crossing 90 dent and flint inbred lines from six segregating families. Two tester designs were also obtained by crossing the same inbred lines to two testers of the opposite group. These designs were evaluated for silage in eight environments and used to predict independent performances of a 951 hybrid factorial design. At a same number of hybrids and lines, the factorial design was as efficient as the tester designs, and, for some traits, outperformed them. All available designs were used as both training and validation set to evaluate their efficiency. When the objective was to predict single-crosses between untested lines, we showed an advantage of increasing the number of lines involved in the training set, by (1) allocating each of them to a different tester for the tester design, or (2) reducing the number of hybrids per line for the factorial design. Our results confirm the potential of sparse factorial designs for genomic hybrid breeding.


Subject(s)
Plant Breeding , Zea mays , Genomics/methods , Humans , Hybridization, Genetic , Silage , Zea mays/genetics
12.
Methods Mol Biol ; 2467: 77-112, 2022.
Article in English | MEDLINE | ID: mdl-35451773

ABSTRACT

The efficiency of genomic selection strongly depends on the prediction accuracy of the genetic merit of candidates. Numerous papers have shown that the composition of the calibration set is a key contributor to prediction accuracy. A poorly defined calibration set can result in low accuracies, whereas an optimized one can considerably increase accuracy compared to random sampling, for a same size. Alternatively, optimizing the calibration set can be a way of decreasing the costs of phenotyping by enabling similar levels of accuracy compared to random sampling but with fewer phenotypic units. We present here the different factors that have to be considered when designing a calibration set, and review the different criteria proposed in the literature. We classified these criteria into two groups: model-free criteria based on relatedness, and criteria derived from the linear mixed model. We introduce criteria targeting specific prediction objectives including the prediction of highly diverse panels, biparental families, or hybrids. We also review different ways of updating the calibration set, and different procedures for optimizing phenotyping experimental designs.


Subject(s)
Genome, Plant , Genomics , Calibration , Genomics/methods , Genotype , Humans , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide
13.
Genetics ; 220(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35150258

ABSTRACT

Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations. Using two maize (Zea mays L.) populations of hybrids admixed between dent and flint heterotic groups, we compared a suite of five genomic prediction models incorporating (or not) parameters accounting for inbreeding and nonadditive effects with the natural and orthogonal interaction approach in single and multienvironment contexts. In both populations, variance decompositions showed the strong impact of inbreeding on plant yield, height, and flowering time which was supported by the superiority of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In most cases dominance variance was reduced when inbreeding was accounted for. The model including additivity, dominance, epistasis, and inbreeding effects appeared to be the most robust for prediction across traits and populations (+0.054 in predictive ability for mean yield). In a multienvironment context, we found that the inclusion of nonadditive and inbreeding effects was advantageous when predicting hybrids not yet observed in any environment. Overall, comparing variance decompositions was helpful to guide model selection for genomic prediction. Finally, we recommend the use of models including inbreeding and nonadditive parameters following the natural and orthogonal interaction approach to increase prediction accuracy in admixed populations.


Subject(s)
Inbreeding , Zea mays , Genotype , Hybridization, Genetic , Models, Genetic , Phenotype , Plant Breeding , Zea mays/genetics
14.
PLoS Comput Biol ; 18(1): e1009659, 2022 01.
Article in English | MEDLINE | ID: mdl-35073307

ABSTRACT

Since their introduction in the 50's, variance component mixed models have been widely used in many application fields. In this context, ReML estimation is by far the most popular procedure to infer the variance components of the model. Although many implementations of the ReML procedure are readily available, there is still need for computational improvements due to the ever-increasing size of the datasets to be handled, and to the complexity of the models to be adjusted. In this paper, we present a Min-Max (MM) algorithm for ReML inference and combine it with several speed-up procedures. The ReML MM algorithm we present is compared to 5 state-of-the-art publicly available algorithms used in statistical genetics. The computational performance of the different algorithms are evaluated on several datasets representing different plant breeding experimental designs. The MM algorithm ranks among the top 2 methods in almost all settings and is more versatile than many of its competitors. The MM algorithm is a promising alternative to the classical AI-ReML algorithm in the context of variance component mixed models. It is available in the MM4LMM R-package.


Subject(s)
Algorithms , Computational Biology/methods , Models, Genetic , Models, Statistical
15.
Int J Biostat ; 18(2): 381-396, 2022 11 01.
Article in English | MEDLINE | ID: mdl-34845884

ABSTRACT

In the context of finite mixture models one considers the problem of classifying as many observations as possible in the classes of interest while controlling the classification error rate in these same classes. Similar to what is done in the framework of statistical test theory, different type I and type II-like classification error rates can be defined, along with their associated optimal rules, where optimality is defined as minimizing type II error rate while controlling type I error rate at some nominal level. It is first shown that finding an optimal classification rule boils down to searching an optimal region in the observation space where to apply the classical Maximum A Posteriori (MAP) rule. Depending on the misclassification rate to be controlled, the shape of the optimal region is provided, along with a heuristic to compute the optimal classification rule in practice. In particular, a multiclass FDR-like optimal rule is defined and compared to the thresholded MAP rules that is used in most applications. It is shown on both simulated and real datasets that the FDR-like optimal rule may be significantly less conservative than the thresholded MAP rule.


Subject(s)
Algorithms
16.
Front Plant Sci ; 13: 1075077, 2022.
Article in English | MEDLINE | ID: mdl-36816478

ABSTRACT

Individuals within a common environment experience variations due to unique and non-identifiable micro-environmental factors. Genetic sensitivity to micro-environmental variation (i.e. micro-environmental sensitivity) can be identified in residuals, and genotypes with lower micro-environmental sensitivity can show greater resilience towards environmental perturbations. Micro-environmental sensitivity has been studied in animals; however, research on this topic is limited in plants and lacking in wheat. In this article, we aimed to (i) quantify the influence of genetic variation on residual dispersion and the genetic correlation between genetic effects on (expressed) phenotypes and residual dispersion for wheat grain yield using a double hierarchical generalized linear model (DHGLM); and (ii) evaluate the predictive performance of the proposed DHGLM for prediction of additive genetic effects on (expressed) phenotypes and its residual dispersion. Analyses were based on 2,456 advanced breeding lines tested in replicated trials within and across different environments in Denmark and genotyped with a 15K SNP-Illumina-BeadChip. We found that micro-environmental sensitivity for grain yield is heritable, and there is potential for its reduction. The genetic correlation between additive effects on (expressed) phenotypes and dispersion was investigated, and we observed an intermediate correlation. From these results, we concluded that breeding for reduced micro-environmental sensitivity is possible and can be included within breeding objectives without compromising selection for increased yield. The predictive ability and variance inflation for predictions of the DHGLM and a linear mixed model allowing heteroscedasticity of residual variance in different environments (LMM-HET) were evaluated using leave-one-line-out cross-validation. The LMM-HET and DHGLM showed good and similar performance for predicting additive effects on (expressed) phenotypes. In addition, the accuracy of predicting genetic effects on residual dispersion was sufficient to allow genetic selection for resilience. Such findings suggests that DHGLM may be a good choice to increase grain yield and reduce its micro-environmental sensitivity.

17.
Cells ; 10(11)2021 11 08.
Article in English | MEDLINE | ID: mdl-34831303

ABSTRACT

Growing virus resistant varieties is a highly effective means to avoid yield loss due to infection by many types of virus. The challenge is to be able to detect resistance donors within plant species diversity and then quickly introduce alleles conferring resistance into elite genetic backgrounds. Until now, mainly monogenic forms of resistance with major effects have been introduced in crops. Polygenic resistance is harder to map and introduce in susceptible genetic backgrounds, but it is likely more durable. Genome wide association studies (GWAS) offer an opportunity to accelerate mapping of both monogenic and polygenic resistance, but have seldom been implemented and described in the plant-virus interaction context. Yet, all of the 48 plant-virus GWAS published so far have successfully mapped QTLs involved in plant virus resistance. In this review, we analyzed general and specific GWAS issues regarding plant virus resistance. We have identified and described several key steps throughout the GWAS pipeline, from diversity panel assembly to GWAS result analyses. Based on the 48 published articles, we analyzed the impact of each key step on the GWAS power and showcase several GWAS methods tailored to all types of viruses.


Subject(s)
Disease Resistance/genetics , Genome-Wide Association Study , Plant Viruses/genetics , Quantitative Trait Loci/genetics , Linkage Disequilibrium/genetics , Plant Breeding
18.
Bioinformatics ; 38(1): 141-148, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34478490

ABSTRACT

MOTIVATION: Combining the results of different experiments to exhibit complex patterns or to improve statistical power is a typical aim of data integration. The starting point of the statistical analysis often comes as a set of P-values resulting from previous analyses, that need to be combined flexibly to explore complex hypotheses, while guaranteeing a low proportion of false discoveries. RESULTS: We introduce the generic concept of composed hypothesis, which corresponds to an arbitrary complex combination of simple hypotheses. We rephrase the problem of testing a composed hypothesis as a classification task and show that finding items for which the composed null hypothesis is rejected boils down to fitting a mixture model and classifying the items according to their posterior probabilities. We show that inference can be efficiently performed and provide a thorough classification rule to control for type I error. The performance and the usefulness of the approach are illustrated in simulations and on two different applications. The method is scalable, does not require any parameter tuning, and provided valuable biological insight on the considered application cases. AVAILABILITY AND IMPLEMENTATION: The QCH methodology is available in the qch package hosted on CRAN. Additionally, R codes to reproduce the Einkorn example are available on the personal webpage of the first author: https://www6.inrae.fr/mia-paris/Equipes/Membres/Tristan-Mary-Huard. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Research Design , Statistics as Topic , Probability
19.
Plant J ; 108(3): 646-660, 2021 11.
Article in English | MEDLINE | ID: mdl-34427014

ABSTRACT

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.


Subject(s)
Crops, Agricultural/genetics , Fabaceae/genetics , Seed Bank , Databases, Genetic , Europe , Genotype , International Cooperation , Seeds/genetics
20.
Genetics ; 216(1): 27-41, 2020 09.
Article in English | MEDLINE | ID: mdl-32680885

ABSTRACT

Populations structured into genetic groups may display group-specific linkage disequilibrium, mutations, and/or interactions between quantitative trait loci and the genetic background. These factors lead to heterogeneous marker effects affecting the efficiency of genomic prediction, especially for admixed individuals. Such individuals have a genome that is a mosaic of chromosome blocks from different origins, and may be of interest to combine favorable group-specific characteristics. We developed two genomic prediction models adapted to the prediction of admixed individuals in presence of heterogeneous marker effects: multigroup admixed genomic best linear unbiased prediction random individual (MAGBLUP-RI), modeling the ancestry of alleles; and multigroup admixed genomic best linear unbiased prediction random allele effect (MAGBLUP-RAE), modeling group-specific distributions of allele effects. MAGBLUP-RI can estimate the segregation variance generated by admixture while MAGBLUP-RAE can disentangle the variability that is due to main allele effects from the variability that is due to group-specific deviation allele effects. Both models were evaluated for their genomic prediction accuracy using a maize panel including lines from the Dent and Flint groups, along with admixed individuals. Based on simulated traits, both models proved their efficiency to improve genomic prediction accuracy compared to standard GBLUP models. For real traits, a clear gain was observed at low marker densities whereas it became limited at high marker densities. The interest of including admixed individuals in multigroup training sets was confirmed using simulated traits, but was variable using real traits. Both MAGBLUP models and admixed individuals are of interest whenever group-specific SNP allele effects exist.


Subject(s)
Hybridization, Genetic , Linkage Disequilibrium , Models, Genetic , Zea mays/genetics , Gene Frequency , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...